Metamaterial Absorber Based Multifunctional Sensor Application
نویسندگان
چکیده
منابع مشابه
Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber.
This Letter describes the fabrication of a microelectromechanical systems (MEMS) bimaterial terahertz (THz) sensor operating at 3.8 THz. The incident THz radiation is absorbed by a metamaterial structure integrated with the bimaterial. The absorber was designed with a resonant frequency matching the quantum cascade laser illumination source while simultaneously providing structural support, des...
متن کاملPerfect metamaterial absorber.
We present the design for an absorbing metamaterial (MM) with near unity absorbance A(omega). Our structure consists of two MM resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%. Unlike conventional absorbers...
متن کاملLiquid crystal tunable metamaterial absorber.
We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and...
متن کاملA Broadband Flexible Metamaterial Absorber Based on Double Resonance
We present a broadband microwave metamaterial (MM) absorber, the unit cell of which consists of a lumped-resistor-loaded electric-inductive-capacitive (ELC) resonator and a cut-wire on the same side of a flexible polyimide substrate. In contrast to the common MM absorber, the metallic pattern layer of the proposed structure is placed parallel to the direction of propagation of the incident wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2017
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/175/1/012059